Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Environ Pollut ; 347: 123709, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447655

RESUMO

Aquatic farming is considered as a major source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) for the natural environment of the lakes. ARB and ARGs in the natural environment have increased quickly because of the human activities. Here, we have profiled the diversity and abundance of ARGs in sediments from the typical aquaculture areas around 15 major lakes in China using PCR and qPCR, and further assessed the risk factor shaping the occurrence and distribution of ARGs. And class 1, 2 and 3 integrons were initially detected by PCR with specific primers. ARGs were widely distributed in the lakes: Weishan Lake and Poyang Lake showed high diversity of ARGs, followed by Dongting Lake, Chao Lake and Tai Lake. Generally, the ARGs in the Middle-Lower Yangtze Plain were more abundant than those in the Qinghai-Tibet Plateau. Tetracycline resistance genes (tet(C), tet(A) & tet(M)) were prominent in sediments, and the next was AmpC ß-lactamase gene group BIL/LAT/CMY, and the last was the genes resistance to aminoglycoside (strA-strB). Partial least squares path modeling analysis (PLS-PMA) revealed that livestock had a significant direct effect on the distribution of ARGs in lakes, and population might indirectly influence the profiles of ARGs by affecting the scale of livestock and aquaculture. The detectable rate of class 1, 2 and 3 integrons were 80%, 100% and 46.67%, respectively. The prevalence of integrons might play a key role in promoting more frequent horizontal gene transfer (HGT) events, resulting in the environmental mobilization and dissemination of ARGs between bacteria.


Assuntos
Antagonistas de Receptores de Angiotensina , Lagos , Humanos , Lagos/microbiologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Aquicultura , China , Antibacterianos/farmacologia , Antibacterianos/análise
2.
Sci Total Environ ; 889: 164302, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211110

RESUMO

Klebsiella pneumoniae has evolved into strains of various phenotypes that pose a grave threat to human health in the past few decades. This study investigated a novel morphotype of K. pneumoniae with enhanced adaption to the hospital environment. Clinical K. pneumoniae were characterized by different genotypic and phenotypic tests. Gene knockout and complementation experiments were used to confirm the genetic changes that led to the morphological changes. ST15 carbapenem-resistant and hypervirulent (CR-hvKP) clinical strains with the "red, dry and rough" (rdar) morphotype were increasingly detected in hospitals in China. Strains with the rdar phenotype were found to be less virulent compared with that with typical morphologies but exhibit enhanced ability to adhere to the surface of various materials, and hence a dramatically increased rate of survival on various materials commonly found in the hospital environment. Comparative genomics analysis and gene function studies suggested the rdar morphotype was due to a G579D substitution in the BcsA protein which enabled the strain to produce a large amount of cellulose. These findings show evolutional phenotypic change enables K. pneumoniae strains to better survive both in human and hospital environments, facilitating its persistence and further dissemination.


Assuntos
Carbapenêmicos , Klebsiella pneumoniae , Humanos , Carbapenêmicos/farmacologia , Virulência/genética , Fenótipo , Hospitais , Antibacterianos
3.
Curr Opin Gastroenterol ; 39(1): 9-15, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504031

RESUMO

PURPOSE OF REVIEW: Campylobacter is a major foodborne pathogen that infects the human intestinal tract. This review discusses the current status of antibiotic resistance, transmission of antibiotic resistance genes, and strategies to combat the global Campylobacter epidemic. RECENT FINDINGS: Over the past 18 months, articles on Campylobacter antibiotic resistance have been published in ∼39 countries. Antibiotic-resistant Campylobacter have been detected in humans, livestock, poultry, wild animals, the environment, and food. Campylobacter spp. are resistant to a wide spectrum of antimicrobial agents, including the antibiotics quinolones, macrolides, tetracyclines, aminoglycosides, and chloramphenicols. Multidrug resistance is a globally emerging problem. Continuous antibiotic pressure promotes the spread of drug-resistant Campylobacter spp. Additionally, Campylobacter is well adapted to acquiring foreign drug resistance genes, including ermB, optrA, fexA, and cfrC, which are usually acquired from gram-positive bacteria. SUMMARY: The widespread use of antibiotics has caused a global epidemic of drug-resistant Campylobacter infections. Many countries are actively reducing the use of antibiotics and adopting alternatives in the livestock and poultry industries to control the spread of drug-resistant Campylobacter spp.


Assuntos
Infecções por Campylobacter , Campylobacter , Animais , Humanos , Resistência Microbiana a Medicamentos , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos
4.
Microbiol Spectr ; 11(1): e0383322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36519849

RESUMO

Mobile colistin resistance (mcr) genes are present mainly in plasmids and can disseminate clonally or horizontally via either plasmids or insertion sequences in different genomic locations among the Enterobacteriaceae. A nationwide large-scale study on mcr prevalence and transmission in nontyphoidal Salmonella isolates is still lacking. Here, we identified 140 mcr-positive Salmonella isolates out of 7,106 isolates from 29 provinces in China from 2011 to 2020. We aligned short reads to putative plasmids from long-read hybrid assemblies and predicted the plasmid backbones of non-long-read sequencing isolates to elucidate mcr transmission patterns. The mcr-1 and mcr-3 genes are transmitted on similar high-risk clones (sequence type 34 [ST34]) but through plasmids of various replicon types. Furthermore, the ban on colistin use in food animals can lead to a decrease in the mcr-positive Salmonella prevalence among diarrheal patients, related mainly to IncHI2A_IncHI2 plasmids. We provide a framework for plasmid data incorporation into genomic surveillance systems, contributing to a better understanding of mcr spread and transmission. IMPORTANCE Nontyphoidal Salmonella is one of four major causative agents of diarrheal diseases globally, with most cases of salmonellosis being mild. Antimicrobial treatments are required for cases of life-threatening infections, and colistin is one of the last-line antibiotics for the treatment of multidrug-resistant Salmonella infections. However, the efficacy of colistin has been compromised by the emergence of various mcr genes. To elucidate the transmission of mcr genes in Salmonella isolates, our study analyzed 7,106 Salmonella strains from 29 provinces in China from 2011 to 2020. The results showed that mcr genes are transmitted on similar high-risk clones (ST34) but through plasmids of various replicon types. In addition, our data illustrated that the ban on the use of colistin in food animals led to a significant decrease in mcr-positive isolates. Our findings offer an essential step toward a more comprehensive understanding of the spread and transmission of mcr genes.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Colistina/farmacologia , Antibacterianos/farmacologia , Enterobacteriaceae , Plasmídeos/genética , Salmonella/genética , Diarreia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética
5.
Genomics Proteomics Bioinformatics ; 20(6): 1168-1179, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36481457

RESUMO

Emergence of the colistin resistance gene, mcr-1, has attracted worldwide attention. Despite the prevalence of mcr-1-positive Escherichia coli (MCRPEC) strains in human carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative genomic study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence ISApl1 was often deleted and the percentage of mcr-1-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), aac(3)-IVa and blaCTX-M-1, emerged and coexisted with mcr-1 in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic E. coli (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), implying that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans from 2016 to 2019, MCRPEC exhibits increased resistance to other clinically important ARGs and contains more virulence genes, which may pose a potential public health threat.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Genômica , Plasmídeos , Dinâmica Populacional
6.
Front Med (Lausanne) ; 9: 983992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507537

RESUMO

The Giant pandas (Ailuropoda melanoleuca) are mammals belonging to the bear family, order Carnivora, and their characteristic hair color and distribution has been in the spotlight. In recent years, the gradual prevalence of skin diseases in giant pandas and even the discovery of albino individuals have made the study of the substrate of their skin hair distribution more and more urgent. In this study, by comparing the skin histology and transcriptomes for hairs of different color of giant pandas, we found that the melanin contents of hair follicles at the bases of black and white hairs differed, but the hair follicles at the base of white hairs also contained some amount of melanin. The transcriptome sequencing results showed that there were great differences in the expression of the transcriptome of the skin under different hair color blocks, in which the number of differentially expressed genes in the white skin was much smaller than that in the black skin. Transcriptomes for skin tissue samples for different hair colors revealed several enriched Kyoto encyclopedia of genes (KEGG) pathways that include tumor, cell adhesion and melanocyte growth-related signaling pathways. This study provides a theoretical basis for subsequent studies on hair color distribution and skin diseases in giant pandas.

7.
mBio ; 13(6): e0283522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472434

RESUMO

Campylobacter is the leading bacterial cause of diarrheal illnesses worldwide. Campylobacter jejuni and C. coli are the most common species accounting for campylobacteriosis. Although the proportion of campylobacteriosis caused by C. coli is increasing rapidly in China, the underlying mechanisms of this emergence remain unclear. In this study, we analyzed the whole-genome sequences and associated environments of 1,195 C. coli isolates with human, poultry, or porcine origins from 1980 to 2021. C. coli isolates of human origin were closely related to those from poultry, suggesting that poultry was the main source of C. coli infection in humans. Analysis of antimicrobial resistance determinants indicated that the prevalence of multidrug-resistant C. coli has increased dramatically since the 2010s, coinciding with the shift in abundance from C. jejuni to C. coli in Chinese poultry. Compared with C. jejuni, drug-resistant C. coli strains were better adapted and showed increased proliferation in the poultry production environment, where multiple antimicrobial agents were frequently used. This study provides an empirical basis for the molecular mechanisms that have enabled C. coli to become the dominant Campylobacter species in poultry; we also emphasize the importance of poultry products as sources of campylobacteriosis caused by C. coli in human patients. IMPORTANCE The proportion of campylobacteriosis caused by C. coli is increasing rapidly in China. Coincidentally, the dominant species of Campylobacter occurring in poultry products has shifted from C. jejuni to C. coli. Here, we analyzed the whole-genome sequences of 1,195 C. coli isolates from different origins. The phylogenetic relationship among C. coli isolates suggests that poultry was the main source of C. coli infection in humans. Further analysis indicated that antimicrobial resistance in C. coli strains has increased dramatically since the 2010s, which could facilitate their adaptation in the poultry production environment, where multiple antimicrobial agents are frequently used. Thus, our findings suggest that the judicious use of antimicrobial agents could mitigate the emergence of multidrug-resistant C. coli strains and enhance clinical outcomes by restoring drug sensitivity in Campylobacter.


Assuntos
Anti-Infecciosos , Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Gastroenterite , Infecções Intra-Abdominais , Humanos , Animais , Suínos , Infecções por Campylobacter/microbiologia , Campylobacter coli/genética , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana/genética , Campylobacter/genética , Campylobacter jejuni/genética , Aves Domésticas , Genômica , Testes de Sensibilidade Microbiana
8.
Lancet Microbe ; 3(11): e846-e856, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202114

RESUMO

BACKGROUND: TMexCD1-TOprJ1, which is associated with phenotypic resistance to multiple classes of antibiotics, is a transmissible resistance-nodulation-division (RND) family efflux pump. However, the prevalence and genomic and phenotypic characteristics of clinical isolates with this important resistance determinant are poorly understood. In this study, we aimed to survey tmexCD-toprJ among clinical Gram-negative isolates collected from hospitals in China between 1991 and 2020 and characterise tmexCD-toprJ-positive clinical isolates. METHODS: We conducted online data retrieval and active nationwide surveillance in China to screen tmexCD-toprJ-positive strains. We characterised tmexCD-toprJ-positive clinical strains for their antimicrobial susceptibility, genetic and functional characteristics, and the potential inter-species transmission route of tmexCD-toprJ with whole genome sequencing and bioinformatics analyses. The function of tmexCD-toprJ in Pseudomonas sp and Proteus sp was investigated by tmexD gene knockdown using an isopropylthio-ß-galactoside-inducible CRISPR interference system. FINDINGS: Data retrieval obtained 53 strains carrying tmexCD-toprJ, comprising 32 Pseudomonas spp, 11 Klebsiella pneumoniae, one Aeromonas spp, one Citrobacter freundii, and one uncultured bacterium from diverse niches. 48 (0·64%) of 7517 clinical isolates from China, including seven Klebsiella spp, one Proteus mirabilis, and 40 Pseudomonas spp, carried tmexCD-toprJ. These isolates exhibited multidrug resistance phenotypes and co-harboured resistance genes, such as mcr and carbapenemases genes. tmexCD-toprJ was encoded on both plasmids and chromosomes in all Klebsiella spp that carried plasmid-borne tmexCD-toprJ (n=7), P mirabilis carried chromosome-borne tmexCD-toprJ, and Pseudomonas spp carried either plasmid-borne (n=19) or chromosome-borne (n=21) ones. tmexCD-toprJ had undergone clonal and horizontal transmission among clinical pathogens. Eight different types of genetic context of tmexCD-toprJ were identified, each of which was associated with different mobile elements, including IntI, IS6100, TnAs1-like, ISRor5, ISVsa3, ISCfr-like, Tn5393, and IS222-like, which might facilitate its transmission. Knockdown of tmexD led to a four times decrease in tigecycline minimum inhibitory concentrations in both Pseudomonas spp and Proteus spp. INTERPRETATION: Our study provides evidence to suggest that tmexCD-toprJ contributes to the antimicrobial resistance phenotypes in different bacterial species. tmexCD-toprJ has disseminated among diverse species of clinical pathogens, which warrants timely monitoring in clinical pathogens. FUNDING: National Natural Science Foundation of China, Guangdong Major Project of Basic and Applied Basic Research, Natural Science Foundation of Jiangsu Province.


Assuntos
Farmacorresistência Bacteriana , Bactérias Gram-Negativas , Farmacorresistência Bacteriana/genética , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Proteus mirabilis , Família Multigênica
9.
Microbiol Spectr ; 10(6): e0229722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287061

RESUMO

Antibiotic resistance genes (ARGs) pose a serious threat to public health and ecological security in the 21st century. However, the resistome only accounts for a tiny fraction of metagenomic content, which makes it difficult to investigate low-abundance ARGs in various environmental settings. Thus, a highly sensitive, accurate, and comprehensive method is needed to describe ARG profiles in complex metagenomic samples. In this study, we established a high-throughput sequencing method based on targeted amplification, which could simultaneously detect ARGs (n = 251), mobile genetic element genes (n = 8), and metal resistance genes (n = 19) in metagenomes. The performance of amplicon sequencing was compared with traditional metagenomic shotgun sequencing (MetaSeq). A total of 1421 primer pairs were designed, achieving extremely high coverage of target genes. The amplicon sequencing significantly improved the recovery of target ARGs (~9 × 104-fold), with higher sensitivity and diversity, less cost, and computation burden. Furthermore, targeted enrichment allows deep scanning of single nucleotide polymorphisms (SNPs), and elevated SNPs detection was shown in this study. We further performed this approach for 48 environmental samples (37 feces, 20 soils, and 7 sewage) and 16 clinical samples. All samples tested in this study showed high diversity and recovery of targeted genes. Our results demonstrated that the approach could be applied to various metagenomic samples and served as an efficient tool in the surveillance and evolution assessment of ARGs. Access to the resistome using the enrichment method validated in this study enabled the capture of low-abundance resistomes while being less costly and time-consuming, which can greatly advance our understanding of local and global resistome dynamics. IMPORTANCE ARGs, an increasing global threat to human health, can be transferred into health-related microorganisms in the environment by horizontal gene transfer, posing a serious threat to public health. Advancing profiling methods are needed for monitoring and predicting the potential risks of ARGs in metagenomes. Our study described a customized amplicon sequencing assay that could enable a high-throughput, targeted, in-depth analysis of ARGs and detect a low-abundance portion of resistomes. This method could serve as an efficient tool to assess the variation and evolution of specific ARGs in the clinical and natural environment.


Assuntos
Genes Bacterianos , Metagenoma , Humanos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Esgotos , Metagenômica/métodos
10.
Int J Food Microbiol ; 381: 109912, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36081243

RESUMO

Florfenicol, an animal-specific broad-spectrum antibiotic, has been widely used in livestock and poultry breeding, which leads to the high antimicrobial resistance (AMR) of Campylobacter in food animals. Recently, a new florfenicol resistance gene, fexA, often located on various multidrug resistance genomic islands (MDRGIs) and confers resistance to various antimicrobial agents, was characterized in Campylobacter. However, the prevalence and genetic environments of fexA and its associated MDRGIs in Campylobacter in the poultry supply chain need further characterization. Here, a total of 111 (15.48 %) Campylobacter isolates (63 C. jejuni, 40 C. coli, 8 C. lari) were obtained from 717 samples from farms, slaughterhouses, and supermarkets. Both phenotypic and genotypic analyses indicated that the AMR of C. coli was significantly higher than that of C. jejuni. PCR amplification and whole genome sequencing showed that the fexA gene was present in 26 out of 35 florfenicol-resistant Campylobacter isolates. This gene was located in the tet(L)-fexA-tet(O) MDRGI. The fexA-harboring isolates detected in the above sources could be clustered into the same branch, indicating that they may have the same ancestor. In addition, the erm(B) gene was identified in 17 Campylobacter isolates, and the A2075G point mutation in the 23S rRNA gene occurred in 26 isolates, emphasizing the high resistance of Campylobacter to macrolides. In summary, these results indicate that fexA within the MDRGI of Campylobacter can be transmitted through bacteria in the animal-based food supply chain, and it is necessary to strengthen the monitoring of the prevalence and spread of fexA in foodborne Campylobacter spp.


Assuntos
Anti-Infecciosos , Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Campylobacter/genética , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Farmacorresistência Bacteriana/genética , Macrolídeos , Testes de Sensibilidade Microbiana , Aves Domésticas/microbiologia , Prevalência , Tianfenicol/análogos & derivados
11.
Int J Antimicrob Agents ; 60(4): 106645, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35907595

RESUMO

OBJECTIVES: Enterobacter cloacae complex (ECC) is among the most common carbapenem-resistant Enterobacteriaceae (CRE) in China. The emergence of mcr has rendered CRE strains resistant to the last-line antibiotic colistin. This study investigated the prevalence of mcr-9 and mcr-10 in carbapenem-resistant ECC (CRECC) and carbapenem-susceptible ECC (CSECC) in China. METHODS: The CRECC and CSECC strains were collected from different regions of China. Antimicrobial susceptibility tests, conjugation experiments, whole genome sequencing, bioinformatic analysis, and quantitative RT-PCR were performed to understand the mechanisms of resistance and transmission of mcr in ECC. RESULTS: A total of 534 ECC were collected, among which 57 (10.7%) and 23 (4.3%) were positive for mcr-9 and mcr-10, respectively. The prevalence of mcr-9 in CRECC was significantly higher than that in CSECC (31.8% vs. 3.7%; P < 0.001), while the prevalence of mcr-10 in CRECC was significantly lower (0.8% vs. 5.5%; P < 0.05). Most mcr-9-positive strains (n = 45, 78.9%) exhibited multidrug-resistant phenotype, and four (17.4%) of the mcr-10-positive strains exhibited multi-drug resistance. Coexistence of mcr and carbapenemase genes was commonly observed, including 41 (71.9%) mcr-9-positive strains and one (4.3%) mcr-10-positive strain, and the possibility of co-transfer was confirmed by conjugation experiments. The mcr-positive ECC were highly diverse, while most mcr genes were plasmid-encoded, indicating the important role of plasmids in the transmission of mcr in ECC. Furthermore, the expression of mcr-9 was increased after induction by colistin. CONCLUSIONS: The widespread mcr genes and co-transfer with carbapenemase genes among ECC strains pose an urgent threat to public health.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Colistina , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacter cloacae/genética , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Plasmídeos/genética , Prevalência
12.
Saudi Pharm J ; 30(6): 849-855, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812137

RESUMO

The emergence of carbapenem-resistant organisms posed considerable threat to global health while only limited treatment options are available and led to efforts to discover a novel way to treat them. To evaluate in vitro synergistic activity of meropenem plus ertapenem, a total of 203 carbapenem-resistant strains, collected from 12 provinces and municipalities in China, were examined with a dual carbapenem combination therapy. The statistical software R was used for analysis. Two hundred and one (201) of carbapenem-resistant strains mainly produced four types of carbapenemase: KPC-2 (n = 142, 69.95%), OXA-232 (n = 7, 3.45%), NDM (n = 38, 18.72%; 36 NDM-1, 1 NDM-4, 1 NDM-5), and IMP (n = 15, 7.39%; 1 IMP-26, 10 IMP-30, 4 IMP-4). Fifty-one out of two hundred and three (51/203 or 25.12%) of the examined strains showed a synergistic effect for the meropenem plus ertapenem combination throughout the checkerboard method, while only three isolates showed potential clinically relevant synergy (3/203, 1.48%). An additive effect was observed in 55/203 (27.09%) of the examined strains. Ninety-seven of the examined isolates (47.78%) showed fractional inhibitory concentration (FIC) greater or equal to 2 (indicating antagonism). The synergistic activity of meropenem plus ertapenem combination suggests this combination can be a possible way to treat the infection caused by the carbapenem-resistant organisms, especially for IMP or NDM producer with a lesser minimum inhibitory concentration (MIC) and the infected individual who was not recommended to use colistin or tigecycline.

14.
Antibiotics (Basel) ; 11(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35740138

RESUMO

Ceftazidime-avibactam (CAV) is a new treatment option against carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. However, the rapid emergence of CAV resistance mediated by KPC variants has posed a severe threat to healthcare after its clinical application. The characteristics of CAV resistance in CRKP strains needs to be determined in China. A total of 477 CRKP isolates were collected from 46 hospitals in Zhejiang Province from 2018 to 2021. The results demonstrated that CAV had a potent activity against 94.5% of all CRKP (451/477, 95% CI: 93.0-96.1%) and 86.0% of CRKP strains carrying blaKPC genes (410/477, 95% CI: 83.5-88.4%). A total of 26 CAV-resistant strains were found. Among these strains, sixteen harbored metallo-ß lactamases, and two carried KPC-2 carbapenemase and mutated ompK35 and ompK36. Eight CRKP strains encoded KPC-33 or KPC-93, belonging to ST11, among which seven strains were detected in patients hospitalized in 2021 after exposure to CAV and one strain was associated with intra-hospital spread. CAV is a potent agent in vitro against CRKP strains. The rapid development of CAV resistance mediated by various KPC variants after a short period of CAV treatment has increased and brought difficulties in treating infections caused by CRKP strains, especially those belonging to ST11. The surveillance of bacterial resistance against CAV is highly recommended due to the steep development of CAV resistance and rapid evolution of KPC enzymes.

15.
Int J Antimicrob Agents ; 60(2): 106619, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35718265

RESUMO

Carbapenems, tigecycline and colistin are three important antimicrobial agents for the treatment of clinical infections caused by multidrug-resistant Enterobacteriaceae. Here we characterised the formation of hybrid plasmids containing mcr-8 and blaNDM-1 or tmexCD1-toprJ1 that could confer resistance to colistin and carbapenems or tigecycline. More specifically, these clinically important genes could be co-transferred through IS26- and ltrA-mediated plasmid fusion to clinical isolates during conjugation under single drug (colistin) selection, following which the recipient strains became carbapenem- or tigecycline-resistant. The transferability and stability of these hybrid multidrug resistance (MDR) plasmids depend on the bacterial host and the presence of antibiotics. Further evolution and adaptation of these hybrid plasmids may facilitate their emergence and spread, which is of great concern for clinical therapy.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Tigeciclina/farmacologia , beta-Lactamases
16.
Nat Commun ; 13(1): 1888, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393429

RESUMO

The acquisition of resistance to one antibiotic sometimes leads to collateral sensitivity to a second antibiotic. Here, we show that vancomycin resistance in Enterococcus faecium is associated with a remarkable increase in susceptibility to pleuromutilin antibiotics (such as lefamulin), which target the bacterial ribosome. The trade-off between vancomycin and pleuromutilins is mediated by epistasis between the van gene cluster and msrC, encoding an ABC-F protein that protects bacterial ribosomes from antibiotic targeting. In mouse models of vancomycin-resistant E. faecium colonization and septicemia, pleuromutilin treatment reduces colonization and improves survival more effectively than standard therapy (linezolid). Our findings suggest that pleuromutilins may be useful for the treatment of vancomycin-resistant E. faecium infections.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Diterpenos , Sensibilidade Colateral a Medicamentos , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Compostos Policíclicos , Vancomicina/farmacologia , Pleuromutilinas
17.
Food Chem Toxicol ; 163: 112966, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378205

RESUMO

Colistin therapy can cause pulmonary toxicity, however, our understanding of the underlying molecular mechanism remains incomplete. This study aimed to investigate the molecular mechanism of colistin-induced pulmonary toxicity in vitro and in vivo. Our results showed that intraperitoneal colistin treatment significantly increased the expression of TGF-ß and NOX4 protein and mRNA, then triggers oxidative stress, mitochondrial dysfunction, and apoptosis in the lung tissue of mice and A549 cells. Moreover, colistin treatment significantly increased levels of mitochondrial ROS (mtROS) and autophagy flux in A549 cells. Inhibition of NOX4 protected A549 cells against colistin-induced mtROS and apoptosis. Colistin treatment also down-regulated the expression of p-Akt and p-mTOR proteins (all P < 0.05 or 0.01) in lung tissues of mice or A549 cells. Inhibition of autophagy or Akt pathways by chloroquine (CQ), 3-Methyladenine (3-MA) or LY294002 promoted colistin-induced mitochondrial damage, and caspase-dependent cellular apoptosis. Whereas, activation of autophagy by rapamycin pretreatment of A549 cells partly abolished colistin-induced cytotoxicity, mitochondrial dysfunction, and apoptosis. This is first study to show that colistin-induced pulmonary toxicity involves the activation of TGF-ß/NOX4/mtROS pathway and the inhibition of Akt/mTOR pathway in lung tissues of mice and highlights the key protective role of autophagy activation.


Assuntos
Colistina , Proteínas Proto-Oncogênicas c-akt , Apoptose , Autofagia , Colistina/metabolismo , Colistina/toxicidade , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
J Antimicrob Chemother ; 77(7): 1856-1861, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35445265

RESUMO

OBJECTIVES: To characterize a clinical Klebsiella pneumoniae isolate from China co-harbouring tet(X4), blaOXA-181 and the aerobactin operon on an IncFIBk-FII-X3-ColKP3 hybrid plasmid. METHODS: A tigecycline-resistant strain was recovered from the intestinal sample of a patient. It was subjected to antimicrobial susceptibility testing, conjugation assay, virulence testing, WGS, bioinformatics analysis, plasmid stability testing and fitness cost testing. RESULTS: The strain K. pneumoniae T877 was resistant to tigecycline, intermediate to piperacillin/tazobactam and ertapenem, and positive for tet(X), blaOXA-181 and the virulence-associated operon iutAiucABCD, which were located on the same plasmid, named pKPT877-hybrid. It was 99.96% identical to the IncFIBk-FII plasmid pSCH6109-Vir (accession number CP050860) from K. pneumoniae strain SCH6109 at 96% coverage with the absence of a 50 kb region on pKPT877-hybrid; this region was highly homologous to the 51 kb IncX3-ColKP3-type, blaOXA-181-carrying plasmid pOXA181-191773 (accession number CP080367). Plasmid pKPT877-hybrid was conjugatively transferable to the ST11 K. pneumoniae strains FJ8 and KP04. pKPT877-hybrid did not have a significant impact on the fitness cost and could be maintained stably in T877. CONCLUSIONS: We report for the first time (to the best of our knowledge) the co-transfer of last-line antibiotic resistance determinants [tet(X4) and blaOXA-181] and the aerobactin operon (iutAiucABCD) by a mobile IncFIBk-FII-X3-ColKP3 hybrid plasmid, which can be stably maintained in K. pneumoniae strains, even in the absence of antibiotic selective pressure. Once the plasmid transfers to a K. pneumoniae with porin deficiency, the strain might have high levels of resistance to carbapenems and tigecycline, which are the last line of defence against infections. Heightened and continuous efforts are needed to control its dissemination.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Óperon , Plasmídeos/genética , Tigeciclina , Virulência/genética , beta-Lactamases/genética
19.
Antioxidants (Basel) ; 11(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35326110

RESUMO

The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.

20.
J Antimicrob Chemother ; 77(6): 1557-1560, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35296903

RESUMO

OBJECTIVES: Recently, epidemiological research has shown an unusually high prevalence of telithromycin-resistant Campylobacter. This study was designed to investigate the potential resistance mechanism of telithromycin resistance in Campylobacter. METHODS: A total of 122 Campylobacter isolates of chicken origin collected in 2019 from three regions of China were tested for susceptibility to telithromycin. The potential mechanism of resistance to telithromycin in Campylobacter was revealed through WGS analysis and natural transformation. RESULTS: In this study, 51.3% (61/119) of Campylobacter coli and 100.0% (3/3) of Campylobacter jejuni were resistant to telithromycin. erm(B) or A2075G mutation in 23S rRNA (23S_A2075G) was identified in the telithromycin-resistant C. coli. Cloning of the erm(B) or 23S_A2075G into C. jejuni NCTC 11168 resulted in a 256-fold increase in the MIC of telithromycin. MLST results indicated that various STs were involved in the dissemination of 23S_A2075G and erm(B). Phylogenetic analysis showed that the C. coli isolates with 23S_A2075G and erm(B) from chickens and humans were closely related. CONCLUSIONS: 23S_A2075G and erm(B), which have been widely spread in different genotypes of C. coli isolated from animals and humans, could mediate high levels of resistance to telithromycin in C. coli. C. coli containing 23S_A2075G or erm(B) are clonally related and have the potential to spread zoonotic diseases.


Assuntos
Campylobacter coli , Campylobacter jejuni , Campylobacter , Animais , Antibacterianos/farmacologia , Campylobacter coli/genética , Campylobacter jejuni/genética , Galinhas , Farmacorresistência Bacteriana/genética , Cetolídeos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Mutação , Filogenia , RNA Ribossômico 23S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA